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Abstract

Inverse problems in imaging are extensively studied, with

a variety of strategies, tools, and theory that have been ac-

cumulated over the years. Recently, this field has been im-

mensely influenced by the emergence of deep-learning tech-

niques. One such contribution, which is the focus of this

paper, is the Deep Image Prior (DIP) work by Ulyanov,

Vedaldi, and Lempitsky (2018). DIP offers a new approach

towards the regularization of inverse problems, obtained by

forcing the recovered image to be synthesized from a given

deep architecture. While DIP has been shown to be quite

an effective unsupervised approach, its results still fall short

when compared to state-of-the-art alternatives.

In this work, we aim to boost DIP by adding an explicit

prior, which enriches the overall regularization effect in or-

der to lead to better-recovered images. More specifically,

we propose to bring-in the concept of Regularization by De-

noising (RED), which leverages existing denoisers for reg-

ularizing inverse problems. Our work shows how the two

(DIP and RED) can be merged into a highly effective un-

supervised recovery process while avoiding the need to dif-

ferentiate the chosen denoiser, and leading to very effective

results, demonstrated for several tested problems.

1. Introduction

Inverse problems in imaging center around the recov-

ery of an unknown image x based on given corrupted mea-

surement y. These problems are typically posed as energy

minimization tasks, drawing their mathematical formula-

tion from a statistical (Bayesian) modeling of the posterior

distribution, P (x|y). As inverse problems tend to be ill-

posed, a key in the success of the recovery process is the

choice of the regularization, which serves as the image prior

that stabilizes the degradation inversion, and directs the out-

come towards a more plausible image.

The broad field of inverse problems in imaging has been

extensively explored in the past several decades. This vast

work has covered various aspects, ranging from the formu-

lation of such problems, through the introduction of diverse

ways to pose and use the regularization, and all the way to

optimization techniques for minimizing the obtained energy

function. This massive research effort has led to one of the

most prominent fields in the broad arena of imaging sci-

ences, and to many success stories in applications, treating

problems such as denoising, deblurring, inpainting, super-

resolution, tomographic reconstruction, and more.

The emergence of deep-learning a decade ago brought

a revolution to the way machine learning is practiced.

At first, this feat mostly focused on supervised classifica-

tion tasks, leading to state-of-the-art results in challenging

recognition applications. However, this revolution found

its way quite rapidly to inverse problems in imaging, due

to the ability to consider these as specific regression prob-

lems. The practiced rationale in such schemes is as fol-

lows: Given many examples of pairs of an original im-

age and its corrupted version, one could learn a deep net-

work to match the degraded image to its source. This

became a commonly suggested and very effective path to

the above-described classical Bayesian alternative, see e.g.,

[34, 12, 32, 20, 19, 13, 18, 35, 30, 33, 26, 16].

The recent work by Ulyanov et. al. [27, 28] is an ex-

ceptional contribution in the intersection between inverse

problems and deep-learning. This work presents the Deep

Image Prior (DIP) method, a new strategy for handling the

regularization task in inverse problems. Rather than taking

the supervised avenue, as most earlier methods do, DIP sug-

gests to use the deep network itself as the regularizer to the

inverse problem. More specifically, DIP removes the ex-

plicit regularization, and replaces it by the assumption that

the unknown image x should be a generated image from a

learned network. DIP fits the network’s parameters for the

corrupted image, this way adapting it per each image to be

treated. Our special interest in this work stems from the

brilliant idea of implicitly using the structure of a network1

to obtain a regularization effect in recovering x.

While DIP has been shown to be quite effective, and

demonstrated successfully on several inverse problems (de-

1... and possibly the optimization strategy as well.



noising, JPEG artifact removal, inpainting, and super-

resolution), its results still fall short when compared to un-

supervised state-of-the-art alternatives. This brings up the

idea to offer an extra boost to DIP by returning the explicit

regularization, so as to enrich the implicit one, and this way

lead to better recovered images. The natural question is, of-

course, which regularization to use, as there are so many op-

tions available. Interestingly, the need to bring back an extra

regularization came up quite recently in the work reported

in [14], where Total-Variation [24] has been used and shown

to lead to improved recovery results. Another relevant work

along these lines is [15], in which Stein’s Unbiased Risk

Estimator (SURE) is leveraged to yield an effective regular-

ization expression for boosting DIP.

Contributions: In this work we propose to bring in the

recently introduced concept of Regularization by Denoising

(RED) [21] and merge it with DIP. The special appeal of

RED is threefold: (i) RED produces a wide family of regu-

larization options, each with its own strengths; (ii) RED can

use any denoiser2; and (iii) RED is superior to many other

regularization schemes. In this work we use NLM [3] and

BM3D [5] as the two denoisers within RED. Both bring an

extra force that does not exist in DIP, due to their reliance

on the self-similarity property. This adds a non-locality fla-

vor to our overall recovery algorithm, which complements

the DIP architecture regularization effect.

A special challenge in our work is finding a way to train

the new compound objective, DIP+RED, while avoiding an

explicit differentiation of the denoising function. This is

achieved using the Alternating Directions Methods of Mul-

tipliers (ADMM) [2], which enjoys an extra side-benefit: a

stable recovery with respect to the stopping rule employed.

The proposed scheme, termed DeepRED, is tested on image

denoising, single image super-resolution, and image deblur-

ring, showing the clear benefit that RED provides. The ob-

tained results exhibit marked improvements, both with re-

spect to the native RED as reported in [21], and DIP itself.

Indeed, DeepRED shows state-of-the-art results among un-

supervised methods for the image deblurring task (when

compared to [31]).

This paper is organized as follows: The next section

presents background material on the inverse problems we

target in this work, as well as describing DIP and RED,

the two pillars of this work. In Section 3 we present the

combined DeepRED scheme, and develop the ADMM al-

gorithm for its training. Section 4 presents our experimental

results, validating the benefits of the additional explicit reg-

ularization on a series of inverse problems. We conclude the

paper in Section 5 by summarizing its message and results

and proposing potential future research directions.

2And this includes a TV-based denoising, implying that the work re-

ported in [14] can be considered as a special case of our approach. Deep-

learning based denoisers, e.g. [34, 12, 32, 20] can be used as well.

2. Background

In this section, we give more details on the inverse prob-

lems we target, and briefly present both the Deep Image

Prior (DIP) approach and the concept of Regularization by

Denoising (RED).

2.1. Inverse Problems of Interest

Within the broad field of inverse problems, our work

considers the case where the measurement y is given by

y = Hx+v, where H is any known linear degradation ma-

trix, and v is an Additive White Gaussian Noise (AWGN).

The recovery of x from y could be obtained by solving

min
x

1

2
‖Hx− y‖22 + λρ(x), (1)

where ρ(x) serves as the chosen regularization term. By

modifying the operator H, we can switch between several

popular problems in image recovery:

• Denoising is obtained for H = I,

• Deblurring (deconvolution) assumes that H is a con-

volution filter,

• Inpainting is obtained when H is built as the identity

matrix with missing rows referring to missing samples,

• Super-resolution refers to a matrix H that represents

both a blur followed by a sub-sampling, and

• Tomographic reconstruction assumes that H applies

the Radon projections or portion thereof.

We stress that the paradigm presented in this paper could be

easily extended to handle other types of noise (e.g., Laplace,

Poisson, Gamma, or other models). This should be done

by replacing the expression ‖Hx − y‖22 by the minus log-

likelihood of the appropriate distribution, as done in [25, 23,

8] in the context of the Poisson noise. Note that our view

on this matter is somewhat different from the view of the

authors of [27], who suggest to handle other types of noise

while still using the L2 penalty.

2.2. Deep Image Prior (DIP)

DIP embarks from the formulation posed in Equation

(1), and starts by removing the regularization term ρ(x).
The idea is to find the minimizer of the first term, ‖Hx −
y‖22. However, this amounts to the Maximum-Likelihood

Estimate (MLE), which is known to perform very poorly

for the inverse problem cases considered in this paper. DIP

overcomes this weakness by assuming that the unknown, x,

should be the output of a deep network, x = TΘ(z), where

z is a fixed random vector, and Θ stands for the network’s

parameters to be learned. Thus, DIP suggests to solve

min
Θ

||HTΘ(z)− y||22, (2)



and presents TΘ(z) as the recovered image.

Observe that the training of Θ itself serves also as the

inference, i.e., this raining is the recovery process, and this

should be done for each input image separately and inde-

pendently. This procedure is “unsupervised” in the sense

that no ideal outcome (label) is presented to the learning.

Rather, the training is guided by the attempt to best match

the output of the network to the measured and corrupted

image. Over-fitting in this case amounts to a recovery of x

that minimizes the above L2 expression while being of poor

visual quality. This is avoided due to the implicit regular-

ization imposed by the architecture of the network TΘ(z)
and the early stopping.3 Indeed, the fact that DIP operates

well and recovers high quality images could be perceived as

a manifestation of the “correctness” of the chosen architec-

ture to represent image synthesis.

In practice, DIP performs very well. The work in [27]

reports several sets of experiments on (i) image denois-

ing – leading to performance that is little bit weaker than

CBM3D [5] and better than NLM [3]; (ii) Single Image

Super-Resolution – leading to substantially better results

than bicubic interpolation and TV-based restoration, but in-

ferior to the learning based methods [10, 11]; and (iii) In-

painting – in which the results are shown to be much better

than CSC-based ones [17].

2.3. Regularization by Denoising (RED)

The quest for an effective regularization for inverse

problems in imaging has played a central role in the vast

progress of this field. Various ideas were brought to serve

the construction of ρ(x) in Equation (1), all aiming to iden-

tify sources of inner structure in visual data. These may rely

on piecewise spatial smoothness (e.g., [24]), self-similarity

across different positions and scales (e.g., [3, 22]), sparsity

with respect to a properly chosen transform or representa-

tion (e.g. [5]), and more.

Among the various inverse problems mentioned above,

denoising has gained a unique position due to its relative

simplicity. This problem has become the de-facto testbed

for exploring new regularization ideas. As a consequence,

many highly effective and trustworthy denoising algorithms

were developed in the past two decades. This brought a sur-

prising twist in the evolution of regularizers, turning the ta-

ble and seeking a way to construct a regularization by using

denoising algorithms. The plug-and-play-prior [29] and the

Regularization by Denoising (RED) [21] are two prime such

techniques for turning a denoiser into a regularization. RED

suggests to use the following as the regularization function:

ρ(x) =
1

2
xT (x− f(x)), (3)

where f(·) is a denoiser of choice. We will not dwell on the

3The number of iterations is bounded so as to avoid overfitting.

rationale of this expression, beyond stating its close resem-

blance to a spatial smoothness term. Amazingly, under mild

conditions4 on f(·), two key and highly beneficial proper-

ties are obtained: (i) The gradient of ρ(·) w.r.t. x is simple

and given by ∇ρ(x) = x − f(x), which avoids differenti-

ating the denoiser function; and (ii) ρ(·) is a convex func-

tional. The work reported in [21] introduced the concept of

RED and showed how to leverage these two properties in or-

der to obtain an effective regularization for various inverse

problems. Our goal in this work is to bring this method to

DIP, with the hope to boost its performance.

3. The Proposed DeepRED Scheme

3.1. Algorithm Derivation

Merging DIP5 and RED, our objective function becomes

min
x,Θ

1

2
‖HTΘ(z)− y‖22 +

λ

2
xT (x− f(x)) (4)

s.t. x = TΘ(z).

Note that a simple strategy is to avoid the use of x and define

the whole optimization w.r.t. the unknowns Θ. This calls

for solving

min
Θ

1

2
‖HTΘ(z)− y‖22

+
λ

2
[TΘ(z)]

T
([TΘ(z)]− f ([TΘ(z)])) .

While this may seem simpler, it is in fact leading to a near

dead-end, since back-propagating over T calls for the dif-

ferentiation of the denoising function f(·). For most de-

noisers this would be a daunting task that must be avoided.

As we have explained above, under mild conditions, RED

enjoys the benefit of avoiding such a direct differentiation,

and we would like to leverage this property here.

The remedy to this problem comes in the form of the Al-

ternating Directions Method of Multipliers (ADMM) [2].

Starting with Equation (4), we turn the constraint into a

penalty using the Augmented Lagrangian (AL) [1]:

min
x,Θ

1

2
‖HTΘ(z)− y‖22 +

λ

2
xT (x− f(x)) (5)

+
µ

2
‖x−TΘ(z)‖22 − µuT (x−TΘ(z)) .

In this expression u stands for the Lagrange multipliers vec-

tor for the set of equality constraints, and µ is a free param-

eter to be chosen. Merging the last two terms, we get the

4The function f(·) should be differentiable, have a symmetric Jaco-

bian, satisfy a local homogeneity condition, and be passive.
5Note that all the derivations and algorithms proposed in this paper are

applicable just as well to Deep-Decoder [9], an appealing followup work

to DIP that promotes a simpler architecture for TΘ(z).



scaled form of the AL [1],

min
x,Θ

1

2
‖HTΘ(z)− y‖22 +

λ

2
xT (x− f(x)) (6)

+
µ

2
‖x−TΘ(z)− u‖22.

The ADMM algorithm amounts to a sequential update of

the three unknowns in this expression: Θ, x, and u. Fixing

x and u, the update of Θ is done by solving

min
Θ

1

2
‖HTΘ(z)− y‖22 +

µ

2
‖x−TΘ(z)− u‖22, (7)

which is very close in spirit to the optimization done in DIP

(using back-propagation), modified by a proximity regular-

ization that forces TΘ(z) to be close to x − u. This prox-

imity term provides as an additional stabilizing and robusti-

fying effect to the DIP minimization.

Fixing Θ and u, x should be updated by solving

min
x

λ

2
xT (x− f(x)) +

µ

2
‖x−TΘ(z)− u‖22. (8)

This is a classic RED objective [21], representing a denois-

ing of the image TΘ(z) + u, and we suggest solving it in

one of two ways: The first option is using the fixed-point

strategy by zeroing the derivative of the above w.r.t. x, and

exploiting the fact that ∇ρ(x) = x− f(x). This leads to

λ (x− f(x)) + µ (x−TΘ(z)− u) = 0. (9)

Assigning indices to the above equation,

λ (xj+1 − f(xj)) + µ (xj+1 −TΘ(z)− u) = 0 (10)

leads to the update formula

xj+1 =
1

λ+ µ
(λf(xj) + µ(TΘ(z) + u)) . (11)

Applying this iterative update several times provides the

needed update for x. An alternative approach for updating

x is a simpler steepest-descent, using the above described

gradient. Thus, the update equation would be

xj+1 = xj − c [λ (xj − f(xj)) + µ (xj −TΘ(z)− u)] , (12)

and c should be chosen so as to guarantee a descent.

As for the Lagrange multipliers vector u, its update is

much easier, given by uk+1 = uk−x+TΘ(z), as emerging

from the AL method [2, 1]. Algorithm 1 summarizes the

steps to be taken to apply this overall algorithm for handling

the DeepRED objective minimization.

Algorithm 1: ADMM Minimization of the DeepRED

objective (Equation (4)).

Result: Obtain the restored image x

Parameters:

• λ - the RED regularization strength

• µ - the ADMM free parameter

• Steepest-descent parameters for updating Θ
• c - Step-size in the SD update of x

• J - number of inner iterations for the update of x

Init: Set k = 0, u0 = 0, x0 = y, and set Θ0 randomly

while not converged do
Update Θk+1: Solve Equation (7) using steepest

descent and back-propagation

Update xk+1: Apply either the fixed point

(Eq.(11)) or the SD (Eq.(12)) for J iterations

Update uk+1: uk+1 = uk − xk+1 +TΘk+1
(z)

k=k+1
end

3.2. Implementation Details

The original DIP algorithm [27] offers three features that

influence the output quality of the restored images. The first

is an early stopping, which prevents the network from over-

fitting to the measurements. The second is a smoothing ap-

plied on the outcome of the last iterations, and the third is an

averaging over separate runs with a different random vector

z. Our tests implement all these as well, but we emphasize

that the early stopping is relevant in our DeepRED scheme

only for saving computations, as the explicit regularization

robustifies the recovery from the risk of overfitting.

Due to the involvement of a highly non-linear system

TΘ(z) in our overall optimization, no convergence guar-

antees can be provided. In addition, when using denois-

ers that violate the conditions posed in [21], the denoising

residual x − f(x) is no longer the exact derivative of the

RED prior. Nevertheless, as we show in the experimental

results, tendency for a consistent descent and a convergence

are obtained empirically.

In our tests we have chosen J = 1, which means that

the denoiser f(·) is applied once in each ADMM round of

updates. The heaviest loads in our algorithm are both the

update of Θ and the activation of the denoiser. Fortunately,

we can speed the overall run of the algorithm by adopting

the following two measures: (i) The denoiser and the update

of Θ can be run in parallel, as shown in Figure 1; and (ii)

We apply the denoiser once every few outer iterations of the

ADMM in order to save run-time.

4. Experimental Results

We now present a series of experiments in which we test

the proposed DeepRED scheme. We consider three applica-



Initialize x, Θ and u = 0

Compute the de-

noised image f(x)
Update Θ

Update x

Update u

Figure 1: The denoiser can be applied in parallel to the up-

date of Θ in order to speed-up the overall algorithm.

tions: image denoising and Single Image Super-Resolution

(SISR), which were also studied in [27], and image de-

blurring, following the experiments reported in [21] and

[31]. Our aim in all these experiments is to show that (i)

DeepRED behaves well numerically; (ii) it is better than

both DIP and RED; (iii) it performs better than DIP+TV

[12]; and (iv) DeepRED is the among the best unsupervised

restoration algorithms, taking the lead in image deblurring.

In all the reported tests the same network as in [27] is

used with an i.i.d. uniform (∼ [0, 0.1]) random input tensor

of size 32×W ×H , where W ×H is the size of the output

image to synthesize. Table 1 summarizes the various param-

eters used for each application. These include the additional

noise perturbation standard-deviation (σnoise), the learning

rate (LR), the employed denoiser and the noise level fed to

it σf , the values of λ and µ (see 1), and the number of it-

erations. All the reported results for DIP are obtained by

directly running the released code. We note that there are

slight changes between the values we get and the ones re-

ported in [27].

When using DeepRED, we employ the Fixed-Point

Strategy as described in 1, and apply the denoiser once

(J = 1) every 10 iterations. Following [27] and [7], in the

deblurring and super-resolution experiments, the results are

compared on the luminance channel, whereas the denoising

results are evaluated with all three channels.

Parameters

σnoise LR denoiser σf λ µ iter.

Denoising 0.033 0.008 NLM 3 0.5 0.5 6000

SISR x4 0.02 0.001 BM3D 5 0.05 0.06 2000

SISR x8 0.02 0.001 BM3D 5 0.05 0.06 4000

Deblurring 0.01 0.004 NLM 3 0.02 0.04 30000

Table 1: Parameters used in the experiments.

4.1. Image Denoising

In this experiment, which follows the one in [27], the

goal is to remove a white additive Gaussian noise with

σ = 25 from the given images. We evaluate our results

on 9 color images6. The regularization denoiser we use

is Python’s scikit-image fast version of Non-Local-Means

[3]. The average PSNR (Peak Signal-to-Noise Ratio) of

this NLM filter stands on 29.13dB. When plugged into

RED, the performance improves to 29.3dB. Turning to DIP

and its boosted version, DIP’s best result is obtained using

both averaging strategies (sliding window and average over

two runs) getting to 30.53dB, whereas DeepRED obtains

31.24dB – a 0.71dB improvement.

Comparing our results to the ones in [14] poses some

difficulties, since their performance is given in SNR and

not PSNR. Also, we suspect that DIP is poorly function-

ing in their tests due to the excessive number of iterations

used. Disregarding these reservations, we may state that

[14] reports of an 0.24dB improvement over DIP in image

denoising with σ = 25, whereas our gain stands on 0.71dB.

We should mention [4] – another recent improvement over

DIP that relies on stochastic gradient Langevin. They report

an average of 30.81dB, a 0.43dB behind our result. This

again shows the effectiveness and need of RED.

We use this experiment to briefly discuss run-time of the

involved algorithms. Both DIP and DeepRED are quite de-

manding optimization processes. When used with the same

number of iterations (1800), DeepRED is clearly slower due

to the additional denoising computations. In this case, the

average run-time7 of DIP on the 9 test images is 6.6 minutes

per image, whereas DeepRED requires 9.5 minutes.

4.2. Single Image Super-Resolution (SISR)

This experiment follows [27] as well. Given a low-

resolution image, the goal is to recover it’s scaled-up ver-

sion. We test scaling factors of 4 and 8 and compare our

results to both DIP [27] and RED [21] on two datasets.

These results are summarized in Tables 2 and 3. As can

be seen, RED+DIP is consistently better than both DIP or

RED alone. Figure 2 presents two visual results taken from

these experiments to illustrate the recovery obtained.

We use this experiment to have a closer look at the nu-

merical behavior of the proposed algorithm. For the im-

age head from Set5, we present in Figure 3 the loss of

DeepRED as given in Equation (4) as a function of the it-

eration number. As can be seen, there is a consistent de-

scent. However, notice in the zoomed-in version of this

graph the small fluctuations around this general descent be-

havior, which are due to the additional noise injected in each

6 http://www.cs.tut.fi/˜foi/GCF-BM3D/.
7All the reported simulations are run on Intel (R) Xeon (R) CPU E5-

2620 v4 @ 2.10Ghz with a GeForce RTX 2080 Ti GPU.
8We use the 12 color images from this data-set.



Original Bicubic [25.82dB] DIP [26.55dB] DeepRED [27.29dB]

Original Bicubic [24.61dB] DIP [26.04dB] DeepRED [26.78dB]

Figure 2: Super resolution results. Top: Flowers (Set14) with scale-factor 4. Bottom: Zebra (Set14) with scale-factor 4.

Set5 Super-Resolution Results (4:1)

Algorithm baby bird btrfly head woman average

DeepRED 33.08 32.62 26.33 32.46 29.11 30.72

RED [FP-BM3D] 33.38 32.66 24.03 32.62 28.46 30.23

DIP [Our Run] 31.65 31.90 26.01 31.53 28.65 29.95

Set5 Super-Resolution Results (8:1)

DeepRED 28.93 27.05 20.04 30.06 24.09 26.04

RED [FP-BM3D] 28.44 26.74 18.96 30.00 23.68 25.56

DIP [Our Run] 28.36 27.01 20.10 29.85 23.89 25.84

Table 2: Super-resolution results for Set5.

iteration. The same figure also shows the ADMM equality

constraint gap (again, see Equation (4)). Clearly, this gap

is narrowing, getting very close to the satisfaction of the

constraint x = TΘ(z). The last graph shows the PSNR

of the output image over the iterations. RED’s regulariza-

tion tends to robustify the overall recovery algorithm against

overfitting, which stands in contrast to the behavior of DIP

alone. Similar qualitative graphs are obtained for various

other images and applications, showing the same tenden-

cies, and thus are omitted.

4.3. Image Deblurring

The next experiments follow similar ones in [21] and

[31], in which we are given a blurred and noisy image with a

known degradation operator H, and the goal is to restore the

original image. We consider two cases: (i) A 9× 9 uniform

blur, and (ii) A 25 × 25 Gaussian blur of width σ = 1.6.

In both cases, the blurry image is further contaminated by

white additive Gaussian noise with σn =
√
2. We present

two comparisons, one using color images (Table 4) and the

other with gray-scale ones (Table 5). In the first, 4 color im-

ages9 are used, and DeepRED is compared with with DIP

[27], RED [21] and NCSR Deblur [7]. In the second ex-

periment 5 gray-scale images from Set5 are tested, and the

comparison is with MSWNN [31], IRCNN [33], RED [21],

NCSR [7], IDD-BM3D [6], and EPLL [36]. Figures 4 and 5

present two sets of inputs and results from the color experi-

9http://www4.comp.polyu.edu.hk/˜cslzhang/NCSR.

htm



Set148Super-Resolution Results (4:1)

Algorithm baboon barbara coastgrd comic face flowers foreman lenna monarch pepper ppt3 zebra average

DeepRED 22.51 25.76 26.00 22.74 32.37 27.29 29.70 31.62 30.76 31.10 24.97 26.78 27.63

RED [FP-BM3D] 22.55 25.76 25.88 22.57 32.60 26.96 29.38 31.56 29.33 31.05 24.50 26.17 27.36

DIP [Our Run] 22.21 25.53 25.82 22.46 31.48 26.55 29.38 30.86 30.27 30.52 24.75 26.04 27.16

Set14 Super-Resolution Results (8:1)

DeepRED 21.33 24.02 23.98 20.05 29.95 23.51 25.38 28.12 25.34 27.91 20.69 21.03 24.28

RED [FP-BM3D] 21.29 23.94 23.51 19.84 29.90 23.19 24.62 27.69 24.39 27.45 20.23 20.61 23.89

DIP [Our Run] 21.18 24.01 23.74 19.95 29.65 23.32 25.00 27.92 24.85 27.99 20.59 20.98 24.10

Table 3: Super-resolution results for Set14.

(a) Loss (b) Loss (zoomed-in)

(c) PSNR (d) ADMM equality constraint

Figure 3: The numerical behavior obtained in the SISR test on head (Set5): (a) and (b) show the loss as a function of the

iteration; (c) presents the output PSNR; and (d) shows the ADMM constraint gap.

ment, showing clearly the benefit of the RED regularization

effect. Looking at Tables 4 and 5, DeepRED performs very

well, outperforming all the other alternative methods.

5. Conclusions

DIP is a deep-learning-based unsupervised restoration

algorithm of great appeal. This work offers a way to fur-

ther boost its performance. Our solution relies on RED -

the concept of regularizing inverse problems using an ex-

isting denoising algorithm. As demonstrated in this paper,

DeepRED is a very effective machine for handling various

inverse problems.

Further work is required in order to better understand

and improve this scheme: (i) Both DIP and DeepRED

[19.07dB] [18.28dB]

Figure 4: The blurred images Butterfly and Leaves.



Original NCSR [29.68dB] DIP [30.26dB] DeepRED [31.44dB]

Original NCSR [29.98dB] DIP [30.38dB] DeepRED [31.21dB]

Figure 5: Uniform Deblurring Results: Top – Butterfly, Bottom – Leaves.

Uniform Deblurring Results

Algorithm Butterfly Leaves Parrots Starfish Average

DeepRED 31.44 31.21 32.03 31.06 31.43

DIP 30.26 30.38 31.00 30.42 30.51

RED FP-TNRD 30.41 30.13 31.83 30.57 30.74

NCSR Deblur 29.68 29.98 31.95 30.28 30.47

Blurred 19.07 18.28 23.87 22.56 20.94

Gaussian Deblurring Results

Algorithm Butterfly Leaves Parrots Starfish Average

DeepRED 32.19 32.27 32.84 32.74 32.51

DIP 31.21 31.51 31.91 31.83 31.62

RED FP-TNRD 31.66 31.93 33.33 32.49 32.35

NCSR Deblur 30.84 31.57 33.39 32.27 32.02

Blurred 22.81 22.12 26.96 25.83 24.43

Table 4: Color image deblurring results.

should be sped-up in order to make them more practical

and appealing. This may be within reach with alternative

optimization strategies; (ii) Incorporating better denoisers

within the RED scheme (perhaps deep-learning based ones)

may lead to further boost in performance; (iii) A more

thorough study of the regularization effect that DIP intro-

duces may help in devising a complementary explicit regu-

larization to add via RED, thereby getting a stronger effect

and better performance; and (iv) The DIP approach (with

or without RED) has an important advantage over super-

vised regression methods: Whereas the latter aims for a

Uniform Deblurring Results

Algorithm Baby Bird Butterfly Head Woman Average

DeepRED 33.11 34.28 29.94 31.87 31.14 32.07

MSWNN 33.14 34.14 28.83 31.81 31.23 31.83

IRCNN 32.85 33.90 28.93 31.74 31.08 31.70

RED+TNRD 32.91 33.70 28.60 31.74 30.49 31.49

NCSR 32.81 33.32 27.90 31.55 30.68 31.25

IDD-BM3D 32.98 33.56 27.77 31.65 30.49 31.29

EPLL 32.76 32.49 26.03 31.37 29.05 30.34

Blurred 26.35 24.67 17.75 26.20 22.15 23.42

Gaussian Deblurring Results

Algorithm Baby Bird Butterfly Head Woman Average

DeepRED 35.30 37.09 30.59 33.22 32.84 33.81

MSWNN 35.21 36.56 30.20 33.01 32.71 33.54

IRCNN 34.83 36.64 29.96 32.68 32.36 33.30

RED+TNRD 34.73 35.88 29.63 32.76 32.13 33.03

NCSR 34.47 35.44 28.77 32.64 31.94 32.65

IDD-BM3D 35.01 36.75 29.28 32.94 32.40 33.27

EPLL 35.06 36.20 28.46 32.88 31.85 32.89

Blurred 30.19 28.87 21.49 29.00 25.91 27.09

Table 5: Gray-scale image deblurring results (Set5).

Minimum-Mean-Squared-Error estimation, DIP(+RED) is

a Maximum-A’posteriori Probability estimate by definition,

a fact that implies a better expected perceptual quality at the

cost of a reduced PSNR. A more in-depth study of this mat-

ter is central to the understanding of both these restoration

strategies.
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